Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
J Biochem ; 173(5): 337-342, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: covidwho-2262469

RESUMEN

N-(4-hydroxyphenyl)-retinamide (4-HPR) inhibits the dihydroceramide Δ4-desaturase 1 (DEGS1) enzymatic activity. We previously reported that 4-HPR suppresses the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) spike protein-mediated membrane fusion through a decrease in membrane fluidity in a DEGS1-independent manner. However, the precise mechanism underlying the inhibition of viral entry by 4-HPR remains unclear. In this study, we examined the role of reactive oxygen species (ROS) in the inhibition of membrane fusion by 4-HPR because 4-HPR is a well-known ROS-inducing agent. Intracellular ROS generation was found to be increased in the target cells in a cell-cell fusion assay after 4-HPR treatment, which was attenuated by the addition of the antioxidant, α-tocopherol (TCP). The reduction in membrane fusion susceptibility by 4-HPR treatment in the cell-cell fusion assay was alleviated by TCP addition. Furthermore, fluorescence recovery after photobleaching analysis showed that the lateral diffusion of glycosylphosphatidylinositol-anchored protein and SARS CoV-2 receptor was reduced by 4-HPR treatment and restored by TCP addition. These results indicate that the decrease in SARS-CoV-2 spike protein-mediated membrane fusion and membrane fluidity by 4-HPR was due to ROS generation. Taken together, these results demonstrate that ROS production is associated with the 4-HPR inhibitory effect on SARS-CoV-2 entry.


Asunto(s)
Antineoplásicos , COVID-19 , Fenretinida , Humanos , Fenretinida/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , SARS-CoV-2/metabolismo , Apoptosis , Oxidorreductasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA